CONFIDENTIAL
ESTABLISHMENT OF RAPID HPLC METHOD TO DETECT DICYANADIAMIDE (DCD) IN MILK POWDER

AND
ANALYSIS RESUITS OF FEW SELECTED MILK POWDER SAMPLES

Issued by
Chemical \& Microbiological Laboratory Industrial Technology Institute

The Report is issued under the following conditions:

CONFIDENTIALITY: Strict Confidentiality is maintained in all interactions with customers. The customer must not use the Industrial Technology Institute (ITI) name and/or data in any manner, which might cause harm to the Institute's reputation and/or business. Under no circumstances is the name of the institute, to be published either alone or in association with that of any other party without prior written approval from the Director of the Institute.
TEST/CALIBRATION METHODS: In the absence of a specific request from the customer, ITI will adopt any appropriate national/international standard method for conducting the test/calibration. In the absence/non accessibility of standard methods, ITI may adopt any other relevant published test/calibration method or follow a method developed at ITI.
TEST/CALIBRATION REPORT: 1. The report is issued for the information of the customer and shall not be reproduced in total or in part without the prior written authority of the Director, ITI. Any person or any party who alters or adds or deletes or interpolates any provisions or words or letter or figures shall be liable to legal action. 2. The report is not a Certificate of Quality. It only applies to the item of the specific product/equipment tested/calibrated or to the consignment/lot/batch from which a representative sample has been drawn by ITI. The results shall not be used to indicate or imply that they are applicable to other similar items. In addition such results must not be used to indicate or imply that ITI approves, recommends or endorses the manufacturer, supplier or user of such product/equipment or that ITI in any way guarantees the later performance of the product/equipment. 3. The report furnished by ITI shall not be used in any advertising or sales promotion without the prior written authority of the Director, ITI. 4. The report is limited specifically to the item/s submitted unless otherwise mentioned. 5. Conformities to a standard specifications may be mentioned as required by standard specification on request by the customer. 6 . TherनTI will not offer any opinion/advise or recommendation with respect to the suitability or ötherwise of the item for any application or use. Interpretation of results and professional opinion and recommendations if required should be requested by the customer and will be provided for an additional fee paid for by customer. 7. Under no circumstances does the ITI accept any liability or loss or damage caused by misuse of the ITI report. Liability is limited to the fee charged in case of proven negligence by the ITI.
COPIES OF REPORT: Only one copy of the report will be made available to the customer. Extra copies if necessary could be requested by customer at the time of submission of job and will be provided on the payment of an extra charge. Additional copies of the report endorsed by the Authorized signatory could be made available at the request of the customer within a period of 01 year from the date of issue of report, on a written request by the customer and on payment of an extra charge. No third party can obtain such a report without written authorization from the customer to ITI.
QUERIES ON REPORT: Customer queries on reports will be entertained only up to a period of 01 year from the date of issue of the report.
RETENTION OF TEST ITEMS: Perishable items will be destroyed immediately after testing, other items after 01 month from the date of issue of the report.
RETURN OF TEST ITEMS: Test items will be returned to the customer at the sole discretion of the ITI only on a written request by the customer.
LOSS OR DAMAGE: While the ITI exercises every care in respect of work entrusted to the Institute by customers, the Institute is not liable for any loss/damage howsoever caused to person/property, including property entrusted by customer to the Institute whether such loss, damage or delay may have been caused by reasons beyond the control of the Institute or otherwise.
LITIGATION: All costs associated with litigation or dispute for oral or written testimony or preparation of same or for any other purpose related to work provided by the ITI shall be paid by the customer. Such costs include, but are not limited to hourly charges, travel and accommodation, mileage, counsel, legal fees and all other expenses associated with the said litigation and dispute.
CHANGE OF CONDITIONS: ITI may at its sole discretion add to or amend the conditions of this report at the time of issue of the repori and such additions or amendments shall be binding on the customer.

0 Introduction

)icyandamide (DCD, 2-Cyanoguanidine) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{4}$ is a Nitrile compound derive from guanidine. Jicyandiamide (DCD) is used in pasture land to reduce greenhouse gas emissions and leaching of nitrogen into waterways. In early 2013, some reports surfaced identifying low levels of licyandiamide in milk powders originating in New Zealand. While only small trace amounts of licyandiamide were detected in the widely reported cases, high doses of DCD are considered oxic for humans. As a result of the finding, milk producers and government agencies moved quickly to reassure there was no risk to the public health. Need was arises to establish a method o detect and quantify DCD in milk powder imports to Sri Lanka.

Chemical Structure of Dicyandiamide:

Molecular Weight: 84.08
tppearance: White,crystal
) ensity $=1.400 \mathrm{~g} / \mathrm{cm}^{3}$
;olubility in water $-41.3 \mathrm{~g} / \mathrm{L}$

\therefore Scope

Determination of Dicyandiamide in milk powder by High Performance Liquid Chromatography with a UV - Detector

3. Method of Analysis

Approximately 1 g of test sample was weighted into a screw capped vial and was dissolved in 1 mL of de-ionized water. Then 2 mL of acetonitrile was added and vortexed for 60 seconds. After separation of acetonitrile layer it was transferred into a MAs-quchERs cartridge. Extraction was repeated with another 2 mL of acetonitrile. Combined acetonitrile layer in the MAs-quchERs cartridge was cleanedup by vortexing for 30 seconds and was centrifuged for 5 min at $5500 \mathrm{r} / \mathrm{min}$. The supernatant was separated into another clean screw capped vial and was evaporated to dryness with slow nitrogen steam. Residue was dissolved in 1 mL acetonitrile. The solution was filtered through $0.22 \mu \mathrm{~m}$ membrane filter and $5 \mu \mathrm{~L}$ of solution was injected into high pressure liquid chromatography (HLPC) system with UV detector (220 nm) Concentration of DCD in milk powder samples were calculated by comparison of peak areas of DCD in test items with those of standards (calibration graph and equation was used).

3.1 Standards preparation:

$0.3 \mathrm{mg} / \mathrm{L}, 0.5 \mathrm{mg} / \mathrm{L}, 1.0 \mathrm{mg} / \mathrm{L}$ and $2.0 \mathrm{mg} / \mathrm{L}$ DCD standard solutions were prepared by diluting the DCD $100 \mathrm{mg} / \mathrm{L}$ stock solution with de-ionized water.

3.2 Sample preparation

Different brands of milk powder samples (as given in following table 1) were prepared as per method 3.0.

Table 1- Brands of milk powder samples tested

Type of milk powder	Number of test samples prepared
Foreign Brand 1(Anchor-Fonterra)	10
Foreign Brand 2(Diamond)	02
Foreign Brand 3(Anchor 1+)	04
Foreign Brand 4(Maliban nonfat)	04
Local Brand 1(Palawatta)	05
Local Brand 2(Highland)	05

3.3 High Performance Liquid Chromatographic (HPLC) Condition:

Detector: Ultra Viloet (UV)
Column: Unisol Amide (HILIC)
Mobile Phase: Solvent A -10mM Ammonium Acetate ($\mathrm{pH}=4.0$)
Solvent B - Acetonitrile
A: B=15:85 (v/v)
Detector-UV 220 nm
Injection Volume: $5 \mu \mathrm{~L}$
Column Temperature: $29^{\circ} \mathrm{C}$
Flow Rate: $0.8 \mathrm{~mL} / \mathrm{min}$

4.0 Determination of Limit of Detection and Limit of Quantification

4.1 Limit of Detection (LOD)

This is the lowest concentration of analyte in a sample that can be detected, t necessarily quantitated, under the stated conditions of the test. When the measun are made at low analyte levels, e.g. in trace analysis, it is important to know the concentration of the analyte that can be confidently detected by the method.

ETABLISHMENT OF RAPID HPLC METHOD TO DETECT DICY ANDIAMIDE (DCD)

IN
MILK POWDER

Kion oftablishment of (LOD)
LOD was established with seven independent sample blanks fortified at lowest acceptable concentration ($0.3 \mathrm{mg} / \mathrm{kg}$) of the analyte and analyzed for DCD on individual fortified samples.
$\mathbf{L O D}=$ Analyte concentration corresponding to a mean sample blank value +3 s (definition)

$$
\begin{aligned}
&=(\bar{x})+3 \mathrm{~s} \\
&=0.219+3 * 0.045 \\
&=0.35 \mathrm{ppm} \\
&(\mathrm{~s}=\text { standard deviation, for } \mathrm{n}=7)
\end{aligned}
$$

4.3 Limit of Quantification (LOQ)

Is the lowest concentration of an analyte that can be determined with acceptable precision and accuracy under the stated conditions of the analysis.
$\mathbf{L O Q}=$ Analyte concentration corresponding to a mean sample blank Value +6 s (definition)
$=(\bar{x})+6 s$
$=0.219+6^{*} .045$
$=0.5 \mathrm{ppm}$

5.0 Determination of Recovery

Analytical methods do not always measure allof the analyte of interest present in the sample. Therefore it is necessary to assess the efficiency of the method in detecting all of the analyte present.

5.1 Establishment of Recovery

Known amount of DCD was spiked in three levels ($0.5 \mathrm{mg} / \mathrm{kg}, 1.0 \mathrm{mg} / \mathrm{kg}$ and $2.0 \mathrm{mg} / \mathrm{kg}$) to a matrix of milk powder with predetermined and verified DCD concentration ($0.44 \mathrm{mg} / \mathrm{kg}$).
Then DCD of spiked samples were extracted as per the above method given in section 3 and quantified for DCD. Recovery percent was calculated as per the formula given in section 5.2 and results were given in table 2.

5.2 Calculation of Recovery

$$
\text { Recovery }(\%)=\left(C_{1}-C_{2}\right) / C_{3} * 100
$$

Where C_{1} is the concentration determined in the fortified sample $C_{2}=$ the concentration determined in unfortified sample $C_{3}=$ concentration of fortification

Table 2 - Results of Spike Recovery

Milk powder	DCD Concentration added (spiked) to sample $(\mathbf{m g} / \mathrm{kg})$	DCD Concentration determined in Sample $(\mathbf{m g} / \mathrm{kg})$	Determined DCD concentration $(\mathrm{mg} / \mathrm{kg})$	Spiked Recovery $\%$
Fonterra	0.5 (Low Level)	0.44	1.03	118
Fonterra	1.0 (Medium Level)	0.44	1.45	101
Fonterra	2.0 (High Level)	0.44	2.10	83

6.0 Linearity

The linearity of an analytical method is its ability to elicit test results that are (directly or by means of well-defined mathematical transformations) proportional to the concentration of analytes in samples within a given range. Linearity is determined by a series of three to six injections of five or more standards whose concentrations span 80-120 percent of the expected concentration range. The response should be (directly or by means of a swell-defined mathematical calculation) proportional to the concentrations of the analytes.

6.1 Establishment of Linearity

The linearity of standard plot (Figure 1) was expressed in terms of the determination of coefficient $\left(\mathrm{R}^{2}\right)$ from plot of the integrated peak area verses concentration of the DCD standard $(\mathrm{mg} / \mathrm{kg})$. The curve equation $\mathrm{y}=\mathrm{mx} \pm \mathrm{c}$ calculated with linear regression method, which was used to determine sample DCD concentrations. This equation was obtained over a range of concentration, in accordance with the levels of DCD found in milk powder. R^{2} value of the equation ($y=m x \pm c$) of the curve was 0.997 shows the good linearity of the analytical method.

Figure 1: Calibration curve of peak area VS concentration for DCD

DCD concentration ($\mathrm{mg} / \mathrm{kg}$)

7. Results and Discussion:-

Summary of validation parameters is given in table 3.
Table 3 - Summary Results of Validation Parameters

Method Validation parameter	CML Result	Literature Results
Linearity $\left(\mathrm{R}^{2}\right)$	0.996	0.997
Recovery	118%	
Low Level	101%	$80 \%-90 \%$
Mid Level		
High Level	83%	
Limit of Detection (LOD)	$0.35 \mathrm{mg} / \mathrm{kg}$	
Limit of Quantification (LOQ)	$0.5 \mathrm{mg} / \mathrm{kg}$	$0.5 \mathrm{mg} / \mathrm{kg}$

-. Table 4 - Summary of DCD in tested milk powder samples $-$

Brand of Milk Powder	DCD Concentration/mg/kg (Average)	DCD Concentration/mg/kg
Foreign Brand 1 (Fonterra)	$0.64(\mathrm{n}=10)$	Min- 0.36 Max-0.96
Foreign Brand 2 (Diamond)	$0.67(\mathrm{n}=2)$	Min- 0.65 Max-0.69
Foreign Brand 4 (Maliban N/F)	$0.66(\mathrm{n}=4)$	Min- 0.61 Max-0.72
Foreign Brand (Anchor1+)	$0.68(\mathrm{n}=4)$	Min-0.62 Max-.0.73
Local Brand 1(Highland)	Not Detected $(\mathrm{n}=5)$	
Local Brand 2(Palawaththa)	Not Detected $(\mathrm{n}=5)$	

$\mathrm{n}=$ number of replicates
Max=Maximum concentration Min=Minimum concentration

N/F - Non Fat

8.0 Conclusion:

Dicyandiamide was detected in all analyzed foreign branded milk powder sample: Dicyanamide was not detected in the tested local branded milk powder samples.
The accuracy of the method cannot be determined due to unavailability of certifie reference material (CRM) for DCD.

9.0 Reference:

HPLC-UV and HPLC-MS/MS published by Bonna-Agela Technologies, http://www.agela.com/Doload.aspx?id=557
M.R.P. Dassanayake

Research Scientist

Research Scientist

JKA. Bondulisema Wijogunaselksa
 Haza

Chemical \& mite. wo. -atical - Laboratory

Chromatograms of Standards

Data Fize C:\CHEM32\1\DATA\SUJITHA\04072013000004.D
Sample Name: DCD St 0.3 ppm

Acq. Operator
Acq. Operator : Sujitha/ruwini
Acq. Instrument : Instrument 1
Date: 7/5/2013 10:22:16 AM
Acq. Method
Acq. Method $=$ C: \CHEM32\DCD.M
Location : Vial 4

7/5/2013 10:13:33 AM by Sujitha/zuwini (modified after loading)
Analysis Method: C:\CHEM32\DCD.M
last changed $: 7 / 8 / 2013$ 3:32:28 PM by Sujitha/ruwini (modified after loading)
Sample Info
Analysis of $X C D$

Anchor Full Cream

Batch No: 0605 CO 883
11:21

$$
203107 / 20
$$

$7 / 26$

Chromatogram of Local branded milk powder
 Sample Name: H_{3})

Acq. Instrument : Instrument 1
Injection Date : 7i21/2013 2:37:51 P4
Inj volume : 5 LI
Acq. Method : C: \Chem32\1\DATA\SP\DCD AN 1 _AND MAL NONFAT 2013-07-21 11-39-04 \DCD.M Last changed : 7/12/2013 11:07:46 AM by Sujitha/ruwini
Analysis Method: C:\CHEM32\1\DATA\SP\DCD AN 1_ANO MAI. NONEAT 2013-07-21 11-39-04\0202001. D\DA.M (DCD.M)

Last changed $\quad 7 / 25 / 2013$ 3:38:51 PM by Sp/Ruwini
DAD1 A. $\mathrm{Sig}=220,4$ Ref $=0$ ff (SPDCD AN 1_AND MAL NONFAT 2013-07-21.11-39-041020-2001.D)

Highland (waed as a bloute)


```
aromatograms of Foreign branded milk powder
```


